## **Product Catalogue**




# ANTRIEBSTECHNIK

Das Winkelgetriebe



Performance-optimized hypoid gearboxes



Miniature vel gearbox

> веvеі Jearboxe

> > Hygiene

Hypoid gearboxes

Worm

Gearbox

ecision gearboxes)

Special

ATEX gearboxes

Gear se

Servi

## 1 Product and Service specifications



Gear ratios: i = 1:1 to 4:1 Maximum output torque: 16 Nm

2 gearbox sizes with edge lengths of 035 to 045 mm

Speeds up to  $n_1 = 3000 \text{ rpm}$ 

Low-backlash construction < 10 angular minutes possible

Gear ratios: i = 1:1 to 6:1 Maximum output torque: 5400 Nm 9 gearbox sizes with edge lengths of 065 to 350 mm

Speeds up to  $n_1 = 3000 \text{ rpm}$ 

Low-backlash construction < 6 angular minutes possible

Sturdy, powerful, compact Housing made of grey cast iron or steel Spiral-toothed gear sets Maintenance-free

Small, lightweight, space-saving,

Housing made of aluminium

Spiral-toothed gear sets

Aluminium design

Maintenance-free

Gear ratios: i = 1:1 to 6:1 Maximum output torque: 430 Nm 4 gearbox sizes with edge lengths of 065 to 140 mm Low-backlash construction < 10 angular minutes possible Corrosion-proof, hygienic, powerful All outside parts made of VA steel Housing made of 1.4305 material Maintenance-free

Gear ratios: i = 3:1 to 15:1 Maximum output torque: 1700 Nm 6 gearbox sizes with edge lengths of 090 to 260 mm Speeds up to  $n_1 = 8000 \text{ rpm}$ 

Dynamic, powerful, compact Housing made of aluminium Hypoid gear sets Axial offset between drive and output-Maintenance-free

Nominal gear ratios: i = 5:1 to 83:1 Maximum output torque: 13,720 Nm 9 sizes, centre-to-centre distance of 040 to 250 mm

Speeds up to  $n_1 = 3000 \text{ rpm}$ 

Low-backlash construction < 6 angular minutes possible

Sturdy, powerful, low-noise Housing made of grey cast iron Axial offset between drive and output Maintenance-free

Type VLM – Type VL with motor Nominal gear ratios: i = 1:1 to 6:1 Maximum output torque: 2310 Nm Output from 0.12 to 30 kW IEC standard motor

Type SLM – Type SL with motor Nominal gear ratios: i = 5:1 to 83:1 Maximum output torque: 13,720 Nm Output from 0.18 to 35 kW IEC standard motor

Bevel gearboxes suitable for fitting servo-motors Worm gearboxes suitable for fitting servo-motors Gear ratios: i = 1:1 to 26:1 Maximum acceleration torque on output: 700 Nm 6 gearbox sizes with edge lengths of 065 to 200 mm

High speeds up to  $n_1 = 6000 \text{ rpm}$ Minimized circumferential backlash (optional) High precision Housing made of grey cast iron

In addition to our standard program we develop and manufacture special gearboxes according to customer requirements.

Questionary

We offer gearboxes for use in potentially explosive atmospheres According to EU Directive 2014/34 / EU (ATEX).

Design sheet

Spiral-toothed bevel gear sets High-quality worm gear sets Gear ratios: i = 1:1 to 83:1 Maximum output torque: 13,720 Nm Toothing module from 0.8 to 12.5 mm


Spare parts drawings for bevel gearboxes Spare parts drawings for worm gearboxes

Lubricant table Local contacts



## 2 Contents







**Legal information:**We give no warranty for the correctness of the contents, in spite of thorough processing. With the publishing of this catalogue, all previous catalogues are rendered invalid. We reserve the right to change the design, weight, and dimensions of our angular gearboxes. Deliveries and services are provided according to our "General Terms and Conditions".



| •        | 1  | Product and service specifications                                                                                                                                                                                           | 1                                                               |
|----------|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| •        | 2  | Contents                                                                                                                                                                                                                     | 3                                                               |
| •        | 3  | The company                                                                                                                                                                                                                  | 5                                                               |
|          | 4  | General Gearboxes Legal classification Designations Corrosion protection Protection classes Shaft types Lubricants Radial shaft seal rings Gearbox data and layout Maintenance and starting-up: Ordering                     | 7<br>7<br>7<br>7<br>8<br>10<br>10<br>11<br>11<br>11<br>14<br>14 |
| •        | 5  | Miniature bevel gearboxes Type overview General construction Type L – Miniature bevel gearboxes                                                                                                                              | 15<br>15<br>16<br>19                                            |
|          | 6  | Bevel gearboxes Type overview General construction Type V - Standard bevel gearboxes Type VS - Type V with step-up ratio Type VL - Type V with flange for motor mounting Branch-off bevel gearboxes - with additional shafts | 29<br>29<br>30<br>33<br>71<br>87<br>123                         |
| •        | 7  | Hygiene-design gearboxes Type overview General construction Type HDV – Hygiene-design bevel gearboxes                                                                                                                        | <b>125</b><br>125<br>126<br>129                                 |
|          | 8  | Hypoid gearboxes Type overview General construction Type H – Standard hypoid gearboxes                                                                                                                                       | 147<br>147<br>148<br>151                                        |
| •        | 9  | Worm gearboxes Type overview General construction Type S – Standard worm gearboxes Type SL – Type S with flange for motor mounting                                                                                           | 177<br>177<br>178<br>183<br>223                                 |
| •        | 10 | Gearbox motors Type overview General construction Type VLM – Type VL with motor (gearbox motor) Type SLM – Type SL with motor (gearbox motor)                                                                                | 263<br>263<br>263<br>267<br>287                                 |
| •        | 11 | Servo gearboxes (precision gearboxes) Type overview Type LC – Servo miniature bevel gearboxes Type VC – Servo bevel gearboxes Type HC – Servo hypoid gearboxes Type SC – Servo worm gearboxes                                | 309<br>309<br>311<br>319<br>351<br>383                          |
|          | 12 | Special gearboxes                                                                                                                                                                                                            | 405                                                             |
| <b>)</b> | 13 | ATEX gearboxes                                                                                                                                                                                                               | 407                                                             |
| •        | 14 | Gear sets Bevel gear sets / worm gear sets                                                                                                                                                                                   | <b>409</b> 409                                                  |
| •        | 15 | Service General information Spare parts Lubricant table Local contacts                                                                                                                                                       | <b>417</b> 418 419 429 433                                      |

### 3 The company











### **ATEK Antriebstechnik**

As a medium-sized gearbox manufacturer, today we look back on over 75 years of tradition. For more than 30 years, everything for us has "revolved" around right-angle power transmission.

Today, as from the beginning, we are driven by one thing: solving your drive-engineering problems. - technically competent, economical, reliable and fast!

Developed and assembled in the Hamburg metropolitan region and distributed throughout the world, our range of products comprising single-stage angular gearboxes has allowed us to secure a large market share which has been steadily growing for the past number of years.

The modularly structured product range primarily comprises bevel gears and worm gears and the servo series which can be combined with modern servo-motors. Our angular gearboxes stand out thanks to their compact build, extensive performance spectrum and variety of feasible step-up/down ratios. Thanks to our enormous warehouse we can often supply our standard series within a matter of hours. Be it for application-specific drive train solutions for special machine

construction or series products for general machine construction: The ATEK modular system leaves nothing to be desired.

Our customers benefit from well-engineered drive train solutions. top-quality products and processes, established know-how and very reasonable value for money.

In addition to a worldwide distribution network which guarantees competent, on-site support, round-the-clock contact and communication can also be established over the Internet. A gearbox configurator is available via our www.atek.de homepage, from which customers and interested parties can download the 3D CAD data of all ATEK bevel gearboxes, worm gearboxes and servo gearboxes, thus allowing them to be more effectively integrated into the construction and supply process.

Formation of Willi Glapiak turnery in Hamburg



Change of legal form into a GmbH (limited liability company)

Merger of Willi Glapiak GmbH and ATEK Ingenieurbüro f. Antriebstechnik to today's ATEK Antriebstechnik Willi Glapiak GmbH and transfer of the company seat to Rellingen

Focussing on single-stage bevel gearboxes and worm gearboxes

### Our motto is Vmax... and not only with regard to the rotational speed of our products

#### **Drive**

Our hallmark: Excellent ability to supply

Efficient logistics: High parts availability at our locations and those of our partners

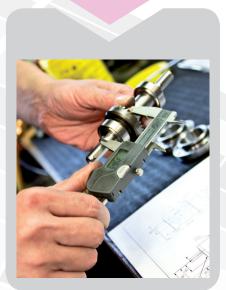
Fast and almost constant reachability

#### **Know-how**

Realisation of our high quality standards through selected, highly specialised suppliers and a qualified and experienced staff team

Our processes are subject to continuous monitoring

Our management system is certified


#### **Performance**

Whether standard or special manufacture, maintenance or advisory service... Your drive-engineering task definition is our challenge!

We set benchmarks as to reliability, dynamics, and high precision

We stand for long-standing partnerships, loyalty and confidence







1995 Inclusion of servo gearboxes

(Ad-Servo series) into the product range

Relocation to Prisdorf / Expansion of production

Internationalisation / Development / extension of foreign markets

Inclusion of miniature gearboxes (L series) into the product range

2012 Inclusion of hypoid gears (HC series) into the product range

Relocation to Rellingen with renewed expansion of production capacities

### 4 General

### 4.1 Gearboxes

"A gearbox is a machine element used to change movement parameters. Sometimes, the change of a force or a torque plays the decisive role. The movement to be changed is often a rotary movement." (Wikipedia)

ATEK offers angular gearboxes of the following types that deflect the direction of a rotary movement by 90° and, if desired, also change the rotational speed and the torque.

#### Bevel gearboxes - types

L miniature

LC prepared for the mounting of a servo-motor

V with free shaft ends

HDV Hygiene-design bevel gearboxes VS the through-shaft is fast-running

VL prepared for the mounting of an IEC standard motor

VLM complete with IEC motor

VC prepared for the mounting of a servo-motor

#### Hypoid gearboxes - types

H with free shaft ends

HC prepared for the mounting of a servo-motor

#### Worm gearboxes - types

S with free shaft ends

SL prepared for the mounting of an IEC standard motor

SLM complete with IEC motor

SC prepared for the mounting of a servo-motor

### 4.2 Legal classification

The gearboxes are "incomplete machines" within the meaning of the Machinery Directive. They are designed for the European market. In non-EU countries, the respective provisions must be observed. The gearbox must not be put into service until it has been ascertained, if appropriate, that the machine into which the gearbox is to be installed complies with the Directive 3006/42/EC.

### 4.3 Designations

### 4.3.1 Designations used

#### Drive

The shaft of the gearbox that is supplied with energy is designated as drive shaft.

#### Output

The shaft(s) of the gearbox from which energy is taken is/are designated as output shaft(s).

#### **Designation of gearbox sides**

The 6 surfaces of the gearbox housing are designated with the numbers 1–6.

### They indicate the fixing side and the installation position.

#### Threaded mounting hole

All gearboxes provide many mounting options on all sides. For details, please refer to the type-specific information.

#### Fixing side

The fixing side is the side of the gearbox on which it is connected to the machine rack. It is important, among other things, for the determination of the arrangement of the vent filters. For details, please refer to the type-specific information.

#### **Installation position**

The installation position defines the gearbox side which is directed downwards during operation. In the above Figure, the installation position 1 is shown. The information on the installation position is needed for assessing the lubricating conditions, the determination of the vent filter arrangement, and the design of the roller bearings.



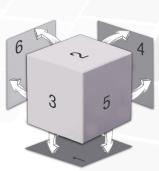



Figure 4.3.1-1; Gearbox sides

#### **Gear ratio**

"In engineering, an apparatus with a gear/transmission ratio is a device which transforms the value of a physical variable into another value of the same variable where both values are in a constructively determined ratio to each other." (Wikipedia)

For the gearboxes, the gear ratio (transmission ratio) [i] is defined as:

$$i = \frac{\text{teeth number}_{\text{output}}}{\text{teeth number}_{\text{drive}}}$$

The transmitted variables are rotational speed [n] and torque [T]

$$i = \frac{n_{drive}}{n_{output}}$$
 and  $i = \frac{T_{output}}{T_{drive}} * \frac{1}{n}$ 

#### **Efficiency**

The efficiency [n] is the ratio of power output to power input. The efficiencies specified in the tables can be achieved at maximum permissible rated output during continuous operation. They are guidance values for run-in gearboxes at operating temperature with standard sealing.

#### Rotational direction of the shaft

The shaft's rotational direction is always seen from the shaft end face towards the gearbox centre. It is indicated as "clockwise" = CW or "counterclockwise" = CCW

### **4.4** Corrosion protection

#### 4.4.1 Prime-coated C1 (standard)

If no additional information is given, ATEK gearboxes are delivered with a prime coat of epoxy-resin based two-component paint base.

Example of order code: V 090 1:1 E0 -9.9- 700/0000

| Gearbox part | Material                | Protection    | Application             |
|--------------|-------------------------|---------------|-------------------------|
| Housing      | Grey cast iron          | 1x prime coat | Layer thickness > 40 μm |
| Flanges      | Grey cast iron or steel | 1x prime coat | Layer thickness > 40 μm |
| Shafts       | C45                     | greased       |                         |

The layer thickness of the surface protection alters the fits defined in the dimensional sketches. If fits are not to receive corrosion protection, please notify us thereof.

Table **4.4.1-1** 





#### 4.4.2 Varnished C2

Upon request, ATEK gearboxes can be varnished in standard and special colour shades. Please contact us. Example of order code: V 090 1:1 E0 -9.9- 700/C2

| Gearbox part | Material                | Protection                         | Application             |
|--------------|-------------------------|------------------------------------|-------------------------|
| Housing      | Grey cast iron          | 1x prime coat, 1x covering varnish | Layer thickness > 80 μm |
| Flanges      | Grey cast iron or steel | 1x prime coat, 1x covering varnish | Layer thickness > 80 μm |
| Shafts       | C45                     | greased                            |                         |
|              |                         |                                    |                         |

Table 4.4.2-1

The layer thickness of the surface protection alters the fits defined in the dimensional sketches. If fits are not to receive corrosion protection, please notify us thereof.

#### 4.4.3 Varnished C3

Upon request, ATEK gearboxes can be equipped with a paint system for the use in an environment exposed to sulphur dioxide. Please contact us. Example of order code: V 090 1:1 E0 -9.9- 700/C3

| Gearbox part  | Material                | Protection                                             | Application              |
|---------------|-------------------------|--------------------------------------------------------|--------------------------|
| Housing       | Grey cast iron          | 2x prime coat, 1x covering varnish 1x covering varnish | Layer thickness > 120 μm |
| Flanges       | Grey cast iron or steel | 2x prime coat, 1x covering varnish 1x covering varnish | Layer thickness > 120 µm |
| Shafts        | C45                     | greased                                                |                          |
| Toble 4 4 2 1 |                         |                                                        |                          |

Table 4.4.3-1

The layer thickness of the surface protection alters the fits defined in the dimensional sketches. If fits are not to receive corrosion protection, please notify us thereof.

#### 4.4.4 Varnished C4

Upon request, ATEK gearboxes can be equipped with a paint system for the use in an industrial environment exposed to salt. Please contact us. Example of order code: V 090 1:1 E0 -9.9- 700/C4

| Gearbox part         | Material                | Protection                                               | Application              |
|----------------------|-------------------------|----------------------------------------------------------|--------------------------|
| Housing              | Grey cast iron          | 1x zinc protection, 1x prime coat<br>1x covering varnish | Layer thickness > 160 μm |
| Flanges              | Grey cast iron or steel | 1x zinc protection, 1x prime coat 1x covering varnish    | Layer thickness > 160 μm |
| Shafts               | C45                     | greased                                                  |                          |
| Table <b>4.4.4-1</b> |                         |                                                          |                          |

The layer thickness of the surface protection alters the fits defined in the dimensional sketches. If fits are not to receive corrosion protection, please notify us thereof.

#### 4.4.5 Electroplated

Chemically plated with nickel. Example of order code: V 090 1:1 E0 -9.9- 700/KB

| Gearbox part         | Material                | Protection | Application |
|----------------------|-------------------------|------------|-------------|
| Housing              | Grey cast iron          | Ni         | ~30 µm      |
| Flanges              | Grey cast iron or steel | Ni         | ~30 µm      |
| Shafts               | Stainless steel         | greased    |             |
| Table <b>4.4.5-1</b> |                         |            |             |

#### 4.4.6 Aluminium

Valid for all miniature gearboxes

Example of order code: L 045 1:1 E0 -9.9- 700/0000

| Admiple of order code. E o to 1:1 |           |            |             |
|-----------------------------------|-----------|------------|-------------|
| Gearbox part                      | Material  | Protection | Application |
| Housing                           | Aluminium | -          | -           |
| Flanges                           | Aluminium | -          | -           |
| Shafts                            | C45       | greased    |             |
| T-1-1- 4 4 C 4                    |           |            |             |

Table 4.4.6-1

#### 4.4.7 Coated (anodised)

Aluminium anodised

Example of order code: L 045 1:1 E0 -9.9- 700/EL

|               | ** * * * * |                  | A 12 12     |
|---------------|------------|------------------|-------------|
| Gearbox part  | Material   | Protection       | Application |
| Housing       | Aluminium  | Anodised coating | ~10 µm      |
| Flanges       | Aluminium  | Anodised coating | ~10 µm      |
| Shafts        | C45        | greased          |             |
| Table 4 4 7-1 |            |                  |             |



#### 4.4.8 Stainless steel

ATEK gearboxes with the "HD" type designation as a prefix will be delivered in a stainless-steel design. See chapter 7 "Hygiene-design gearboxes"

### **4.5** Protection classes

| Protection class | Seal                      |  |
|------------------|---------------------------|--|
| IP 54 (standard) | Standard seal NBR, form A |  |
| IP 56            | Special seal, form AS     |  |
|                  | Table <b>4.5-1</b>        |  |

Other protection classes are available on request.

### 4.6 Shaft types

#### 4.6.1 Construction types

The construction types are classified by rotational direction and design of the output shaft.

| Overhung-mounted output shaft                                     | AO | F0 |
|-------------------------------------------------------------------|----|----|
| Drive shaft and output shaft have the same direction of rotation  | В0 | G0 |
| Drive shaft and output shaft have opposite directions of rotation | CO | Н0 |
| One continuous output shaft made of solid material                | DO | JO |
| One continuous hollow shaft at the output                         | EO | КО |

#### 4.6.2 Solid shaft

In the standard design, a shaft fit with the ISO tolerance field 6 is provided.

The parallel keyways of the individual shafts are aligned with each other during the assembly. Due to the gear meshing, positional deviations may occur.

#### 4.6.3 Hollow shaft

The order code of the hollow shaft design is coded with 4 characters. The first two characters define the construction type. The third character defines the type of force transmission, and the fourth character defines the gearbox side with the selected force transmission.

| 1st numeral | 2nd numeral | 3rd numeral        | 4th numeral     |
|-------------|-------------|--------------------|-----------------|
| Constru     | ction types | Force transmission | On gearbox side |
| E           | 0           | K (splined shaft)  | 5               |
| K           | 1           | N (groove)         | 6               |
|             | 2           | S (clamping hub)   | 0 (5+6)         |
|             |             | P (polygon shaft)  |                 |

#### Standard hollow shaft EON\* (KON\*) \*- Gearbox sides

The output shaft will be constructed as a hollow shaft with the ISO tolerance field 7. It will then be delivered with a parallel keyway: according to DIN 6885, Sheet 1. (Order code EON, KON) Many gearbox sizes can also be delivered with an enlarged hollow shaft bore (order code /SH).

#### Hollow shaft with splined hub profile EOK\* (KOK\*) \*- Gearbox sides

The hollow shaft gearboxes can also be delivered with a hollow shaft with splined shaft profile according to DIN ISO 14. (Order code EOK, KOK)





#### Hollow shaft with shrink disc EOS\* (KOS\*) \*- Gearbox sides

The hollow shaft with shrink disc enables non-positive (frictional) transmission of the torque. The bore of the hollow shafts is stepped for easier mounting and has a bronze bushing on the guide side. (Order code EOS, KOS)

#### Hollow shaft with polygon profile (EOP\*, KOP\*) \*- Gearbox sides

The hollow shaft gearboxes can also be delivered with a hollow shaft with polygon profile according to DIN 32711. (Order code EOP, KOP)

### 4.7 Lubricants

ATEK gearboxes are factory-filled with synthetic oils. Especially for applications in machines of the food industry and pharmaceutical industry, the gearboxes can optionally be delivered with NOTOX lubricants (order code /NT) that meet the requirements according to NSF H-1. All lubricant designations and alternatives can be gathered from the lubricant table on page 423.

No oil change will be necessary during the gearbox lifetime if the mechanical and thermal limit ratings are observed.

The lifetime of the bearings can be increased by the factor 1.5 if the oil is changed after the first 500 service hours and then every 5000 service hours.

### 4.8 Radial shaft seal rings

The rotating shafts are sealed by radial shaft seal rings according to DIN3761.

In the standard application, the type A made of NBR material (nitrile butadiene rubber) is used. In a dust-bearing environment, the type AS with an additional dust lip is used. For oil temperatures up to 130°C, shaft seal rings made of FCR (fluorocarbon rubber) can be used.

### 4.9 Gearbox data and layout

#### 4.9.1 Lifetime

In case of intended use, the lifetime of all gearbox elements will be more than 15,000 hours. The precondition is that the layout and the operation are according to the guidelines of the catalogue.

#### 4.9.2 Noise generation

The noise generation depends on many factors. Examples are gearbox size, speed, direction of rotation, lubrication, and installation position. Other important influences result from the installation conditions.

#### 4.9.3 Output and torque values

The values in the performance tables are valid for the lubrication with synthetic oils. A lubricant temperature of 90°C is taken as a basis for the thermal limit rating. If an exceeding of the permissible oil temperature is safely prevented by special measures (e.g. oil cooler) examination of the thermal limit rating may be refrained from.

In special cases, e.g. in case of very short operating time or only static load, an increase of the permissible torques is possible, if appropriate.

The permissible rated power inputs  $P_{1N}$  and rated output torques  $T_{2N}$ , which are listed in the performance tables, are valid for shock-free operation, 10 hours of daily operation period, 10 run-ups per hour. The rated thermal outputs  $P_{1Nt}$  and output torques  $T_{2Nt}$ , respectively, are valid for an ambient temperature of 20°C and continuous operation. The maximum output torque  $T_{2max}$  may be achieved during short-time load peaks, but must not be exceeded. The operating conditions according to the design factors are presupposed. (see 4.8.6.2)

#### 4.9.4 On-period ED

The on-period (ED, abbrev. for German term Einschaltdauer) designates a maximum permissible operating interval of a piece of equipment after which a rest period is required in order not to damage or destroy the piece of equipment. The rated modes are specified, inter alia, in the DIN VDE 0530-1. The on-period can be indicated dimensionless as a percentage value (ratio of useful life to the observation period). Generally, the utilisation period is indicated in addition to the percentage value. If not, the utilisation period is considered to be 10 minutes. (Wikipedia)



| VDE 0530-1 | Operating mode                                                                   |
|------------|----------------------------------------------------------------------------------|
| <b>S1</b>  | Continuous operation, constant load                                              |
| S2         | Short-time operation, constant load                                              |
| <b>S</b> 3 | Intermittent operation without influence of starting on the temperature          |
| S4         | Intermittent operation with influence of starting on the temperature             |
| <b>S5</b>  | Intermittent operation with influence of starting and braking on the temperature |
| <b>S6</b>  | Continuous operation with intermittent load                                      |
| S7         | Continuous operation with starting and braking                                   |
| \$8        | Continuous operation with load change                                            |

### 4.9.5 Abbreviations used

| Abbreviation          | [Unit]               | Designation                                                            |
|-----------------------|----------------------|------------------------------------------------------------------------|
| $\mathbf{F_r}$        | [N]                  | Radial force                                                           |
| Fa                    | [N]                  | Axial force                                                            |
| i <sub>ist</sub>      | [-]                  | Actual gear ratio                                                      |
| i                     | [-]                  | Nominal gear ratio                                                     |
| P <sub>1</sub>        | [kW]                 | effective input power                                                  |
| P <sub>2</sub>        | [kW]                 | effective output power                                                 |
| $P_{1N}$              | [kW]                 | permissible nominal input power, mechanical                            |
| P <sub>1Nt</sub>      | [kW]                 | permissible nominal input power, thermal                               |
| P <sub>1m</sub>       | [kW]                 | corrected input power, mechanical                                      |
| P <sub>1t</sub>       | [kW]                 | corrected input power, thermal                                         |
| T <sub>1</sub>        | [Nm]                 | input torque                                                           |
| T <sub>1B</sub>       | [Nm]                 | permissible acceleration torque at the input drive (servo gearbox)     |
| T <sub>1NOT</sub>     | [Nm]                 | permissible input torque in case of emergency shut-off (servo gearbox) |
| $T_2$                 | [Nm]                 | effective output torque                                                |
| T <sub>2B</sub>       | [Nm]                 | permissible acceleration torque at the output drive                    |
| T <sub>2N</sub>       | [Nm]                 | permissible nominal output torque, mechanical                          |
| T <sub>2NOT</sub>     | [Nm]                 | permissible output torque in case of emergency shut-off                |
| T <sub>2Nt</sub>      | [Nm]                 | permissible nominal output torque, thermal                             |
| T <sub>2m</sub>       | [Nm]                 | corrected output torque, mechanical                                    |
| T <sub>2max</sub>     | [Nm]                 | maximum permissible output torque                                      |
| T <sub>2t</sub>       | [Nm]                 | corrected output torque, thermal                                       |
| $T_A$                 | [Nm]                 | starting torque                                                        |
| J                     | [kgcm <sup>2</sup> ] | inertia moment                                                         |
| $J_1$                 | [kgcm <sup>2</sup> ] | inertia moment related to the fast-rotating shaft                      |
| J <sub>ex. red.</sub> | [kgcm <sup>2</sup> ] | external inertia moments reduced to drive shaft                        |
| J <sub>mot</sub>      | [kgcm <sup>2</sup> ] | inertia moment of the motor                                            |
| N <sub>1</sub>        |                      | fast-rotating shaft                                                    |
| $N_2$                 |                      | slowly rotating shaft                                                  |
| f <sub>1</sub>        | [-]                  | operating factor                                                       |
| f <sub>2</sub>        | [-]                  | starting factor                                                        |
| f <sub>3</sub>        | [-]                  | lubrication factor                                                     |
| f <sub>4</sub>        | [-]                  | temperature factor                                                     |
| f <sub>5</sub>        | [-]                  | duty-cycle factor                                                      |
| $f_{MB}$              | [-]                  | mass acceleration factor                                               |
| n <sub>1</sub>        | [rpm]                | speed of fast-rotating shaft                                           |
| n <sub>2</sub>        | [rpm]                | speed of slowly rotating shaft                                         |
| t <sub>u</sub>        | [°C]                 | ambient temperature                                                    |
| η                     | [-]                  | efficiency                                                             |
| η'                    | [-]                  | efficiency in case of driving worm gear                                |



### 4 General

#### 4.9.6 Layout

#### Calculation of power and torque

The following relations exist between the power (P), the torque (T) and the rotational speed (n):

P<sub>1</sub>=T<sub>1</sub>\*n<sub>1</sub>

 $n_1=n_2*i$ 

 $P_2 = T_2 * n_2$ 

P<sub>1</sub>: Power is input to the shaft (torque and rotational direction have the same sense of rotation)

 $P_2^-$ : Power is taken off (torque and rotational direction have an opposite sense of rotation)

n<sub>1</sub>: speed of fast-rotating shaft

n2: speed of slowly rotating shaft

The following formulas apply to the (normal) case where power is input to the fast-rotating shaft

(the shaft  $N_1$  is driven):  $P_2=P_1*\eta$ 

Required input power with given output torque and output speed of the driven machine

$$P_1 [kW] = \frac{T_2 [Nm] * n_2 [rpm]}{\eta * 9550}$$

Formula 1

Available output torque with given input power and input speed of the driving machine

$$T_2 [Nm] = \frac{P_1 [kW] * i * \eta * 9550}{n_1 [rpm]}$$

Formula 2

When selecting the gearbox size, it is necessary to consider the influences that the gearbox will be exposed to later.

This is done through the design factors specified below.

The transmittable power, or the torque, may be reduced by these factors!

In order to determine the gearbox size, the required input power or the output torque must be calculated by means of the operating factors.

Mechanical and thermal influences are taken account of by the formulas.

Mechanical:

 $P_{1m} = P_1 * f_1 * f_2 * f_3$ 

 $T_{2m} = T_2 * f_1 * f_2 * f_3$ 

Thermal:

 $P_{1t} = P_1 * f_3 * f_4 * f_5$ 

 $T_{2t} = T_1 \cdot I_3 \cdot I_4 \cdot I_5$  $T_{2t} = T_2 \cdot f_3 \cdot f_4 \cdot f_5$  The following conditions apply:

 $P_{1m} < P_{1N}$ 

 $T_{2m} < T_{2N}$ 

The following conditions apply:

 $P_{1t} < P_{1Nt}$ 

 $T_{2t} < T_{2Nt}$ 

#### **Design factors (f1, f2, f3, f4, f5, f6)**

#### Operating factor f<sub>1</sub>

Determination of load group f<sub>MB</sub>

$$f_{\text{MB}} = \frac{J_{\text{ex.red.}}}{J_{\text{mot}}}$$

| f <sub>MB</sub>      | Group                            | Examples                                                                                                                                                                                                                                                                                                                                         |  |  |
|----------------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| < 0.25               | G<br>low load / without shocks   | Filling machines, elevators, light conveyor spirals, light conveyor belts, blowers, small agitators, inspection machines, assembly lines, machine tool auxiliary drives, centrifuges, packaging machines.                                                                                                                                        |  |  |
| < 3.00               | M<br>medium load / slight shocks | Reels, agitators, slat conveyors, calendering machines, cargo lifts, mixers, balancing machines, heavy conveyor belts, sheet-metal bending machines, road construction machines, planing machines, shears, extruders, machine tool main drives, kneading machines, weaving looms, light roller beds.                                             |  |  |
| < 10.00              | S<br>high load / severe shocks   | Excavators, heavy mixers, presses, edge mills, rolling mills, heavy roller beds, cold-rolling mills, stone crushers, eccentric presses, cutting heads, edge-forming machines, belt conveyors (parcelled cargo/goods), barking drums, running gears, punching machines, piston pumps, rotary furnaces, mills/pulverisers, plate turnover devices. |  |  |
| Table <b>4.9.6-1</b> |                                  |                                                                                                                                                                                                                                                                                                                                                  |  |  |



#### Determination of operating factor f<sub>1</sub>

| Driving machine     | Load group | Operating hours / day |      |      |                      |
|---------------------|------------|-----------------------|------|------|----------------------|
|                     | fMB        | <0.5                  | 3    | 10   | 24                   |
| Electric motor      | G          | 0.80                  | 0.90 | 1.00 | 1.25                 |
| Hydraulic motor     | M          | 0.90                  | 1.00 | 1.25 | 1.50                 |
| Turbine             | S          | 1.00                  | 1.25 | 1.50 | 1.75                 |
| Combustion engine   | G          | 0.90                  | 1.00 | 1.25 | 1.50                 |
| 4-6-cylinder engine | M          | 1.00                  | 1.25 | 1.50 | 1.75                 |
|                     | S          | 1.25                  | 1.50 | 1.75 | 2.00                 |
| Combustion engine   | G          | 1.00                  | 1.25 | 1.50 | 1.75                 |
| 1-2-cylinder engine | M          | 1.25                  | 1.50 | 1.75 | 2.00                 |
|                     | S          | 1.50                  | 1.75 | 2.00 | 2.25                 |
|                     |            |                       |      |      | Table <b>4.9.6-2</b> |

#### Starting factor f<sub>2</sub>

| Starts per hour | up to 10 | 10-60 | 60-500 | 500-1500             |
|-----------------|----------|-------|--------|----------------------|
| f2              | 1.0      | 1.1   | 1.2    | 1.3                  |
|                 |          |       |        | Table <b>4.9.6-3</b> |

#### Lubrication factor f3

|                                 | Synthetic oil | Mineral oil    | Mineral oil          |  |
|---------------------------------|---------------|----------------|----------------------|--|
| Bevel gearboxes, worm gearboxes |               | Worm gearboxes | Worm gearboxes       |  |
|                                 | All sizes     | Size 040-080   | Size 100-200         |  |
| f <sub>3</sub>                  | 1.0           | 1.2            | 1.25                 |  |
|                                 |               |                | Table <b>4.9.6-4</b> |  |

#### Temperature factor f4

The factor f<sub>4</sub> considers the influence of the ambient temperature

| t <sub>u</sub> [°C] | 10  | 20 | 30   | 40  | 50                   |
|---------------------|-----|----|------|-----|----------------------|
| f <sub>4</sub>      | 0.9 | 1  | 1.15 | 1.4 | 1.7                  |
|                     |     |    |      |     | Table <b>4.9.6-5</b> |

#### Operating mode / duty-cycle factor f5

The operating mode is defined via the duty cycle (on-period). The on-period can be indicated dimensionless as a percentage value.

$$ED = \frac{\text{Loading time}}{\text{Observation period}} * 100\%$$

Generally, the utilisation period is indicated in addition to the percentage value. If not, the utilisation period is considered to be 10 minutes.

| Operating mode |                      | On-period                                                                              |  |  |  |
|----------------|----------------------|----------------------------------------------------------------------------------------|--|--|--|
| <b>S</b> 1     | Continuous operation | more than 60% of the cycle time or longer than 20 minutes                              |  |  |  |
| <b>S</b> 5     | Cyclic operation     | Here, the on-period is less than 60% of the process procedure and less than 20 minutes |  |  |  |
|                |                      | Table 4 9 6-6                                                                          |  |  |  |

Principally, the limit values for speed, torque, acceleration and temperature must be observed in all operating modes.

| On-period in % | 100 | 80   | 60   | 40   | 20                   |
|----------------|-----|------|------|------|----------------------|
| f <sub>5</sub> | 1.0 | 0.95 | 0.86 | 0.75 | 0.56                 |
|                |     |      |      |      | Table <b>4.9.6-7</b> |

### 4.10 Maintenance and starting-up

For information on starting-up and maintenance, please refer to the operating instructions. They can be found on the Internet by accessing www.atek.de/download. There you can also find information on the Machinery Directive 2006/42 EC.

### 4.11 Ordering

ATEK gearboxes are available in many variants. When a gearbox is first ordered, we will define a unique article number. In case of follow-up orders, it is enough to specify our article number to reorder exactly the same gearbox type.



Status as per 06 / 2017